Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Pharmacol Ther ; 251: 108531, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37717739

ABSTRACT

Glucocorticoids (GCs) are a class of steroid hormones that regulate key physiological processes such as metabolism, immune function, and stress responses. The effects of GCs are mediated by the glucocorticoid receptor (GR), a ligand-dependent transcription factor that activates or represses the expression of hundreds to thousands of genes in a tissue- and physiological state-specific manner. The activity of GR is modulated by numerous coregulator proteins that interact with GR in response to different stimuli assembling into a multitude of DNA-protein complexes and facilitate the integration of these signals, helping GR to communicate with basal transcriptional machinery and chromatin. Here, we provide a brief overview of the physiological and molecular functions of GR, and discuss the roles of GR coregulators in the immune system, key metabolic tissues and the central nervous system. We also present an analysis of the GR interactome in different cells and tissues, which suggests tissue-specific utilization of GR coregulators, despite widespread functions shared by some of them.


Subject(s)
Gene Expression Regulation , Receptors, Glucocorticoid , Humans , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Glucocorticoids/pharmacology , Transcription Factors/metabolism
2.
Comput Struct Biotechnol J ; 21: 1697-1710, 2023.
Article in English | MEDLINE | ID: mdl-36879886

ABSTRACT

Glucocorticoids are potent immunosuppressive drugs, but long-term treatment leads to severe side-effects. While there is a commonly accepted model for GR-mediated gene activation, the mechanism behind repression remains elusive. Understanding the molecular action of the glucocorticoid receptor (GR) mediated gene repression is the first step towards developing novel therapies. We devised an approach that combines multiple epigenetic assays with 3D chromatin data to find sequence patterns predicting gene expression change. We systematically tested> 100 models to evaluate the best way to integrate the data types and found that GR-bound regions hold most of the information needed to predict the polarity of Dex-induced transcriptional changes. We confirmed NF-κB motif family members as predictors for gene repression and identified STAT motifs as additional negative predictors.

3.
Acta Physiol (Oxf) ; 237(3): e13936, 2023 03.
Article in English | MEDLINE | ID: mdl-36645134

ABSTRACT

The circadian clock is a hierarchical timing system regulating most physiological and behavioral functions with a period of approximately 24 h in humans and other mammalian species. The circadian clock drives daily eating rhythms that, in turn, reinforce the circadian clock network itself to anticipate and orchestrate metabolic responses to food intake. Eating is tightly interconnected with the circadian clock and recent evidence shows that the timing of meals is crucial for the control of appetite and metabolic regulation. Obesity results from combined long-term dysregulation in food intake (homeostatic and hedonic circuits), energy expenditure, and energy storage. Increasing evidence supports that the loss of synchrony of daily rhythms significantly impairs metabolic homeostasis and is associated with obesity. This review presents an overview of mechanisms regulating food intake (homeostatic/hedonic) and focuses on the crucial role of the circadian clock on the metabolic response to eating, thus providing a fundamental research axis to maintain a healthy eating behavior.


Subject(s)
Circadian Clocks , Circadian Rhythm , Humans , Animals , Circadian Rhythm/physiology , Feeding Behavior/physiology , Obesity , Circadian Clocks/physiology , Eating/physiology , Mammals
4.
FEBS Lett ; 596(20): 2596-2616, 2022 10.
Article in English | MEDLINE | ID: mdl-35612756

ABSTRACT

Glucocorticoids (GCs) are widely used therapeutic agents to treat a broad range of inflammatory conditions. Their functional effects are elicited by binding to the glucocorticoid receptor (GR), which regulates transcription of distinct gene networks in response to ligand. However, the mechanisms governing various aspects of undesired side effects versus beneficial immunomodulation upon GR activation remain complex and incompletely understood. In this review, we discuss emerging models of inflammatory gene regulation by GR, highlighting GR's regulatory specificity conferred by context-dependent changes in chromatin architecture and transcription factor or co-regulator dynamics. GR controls both gene activation and repression, with the repression mechanism being central to favourable clinical outcomes. We describe current knowledge about 3D genome organisation and its role in spatiotemporal transcriptional control by GR. Looking beyond, we summarise the evidence for dynamics in gene regulation by GR through cooperative convergence of epigenetic modifications, transcription factor crosstalk, molecular condensate formation and chromatin looping. Further characterising these genomic events will reframe our understanding of mechanisms of transcriptional repression by GR.


Subject(s)
Glucocorticoids , Receptors, Glucocorticoid , Glucocorticoids/pharmacology , Glucocorticoids/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Ligands , Chromatin/genetics , Transcription Factors/genetics
5.
Proc Natl Acad Sci U S A ; 119(10): e2200083119, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35238641

ABSTRACT

SignificanceWhile increasing evidence associates the disruption of circadian rhythms with pathologic conditions, including obesity, type 2 diabetes, and nonalcoholic fatty liver diseases (NAFLD), the involved mechanisms are still poorly described. Here, we show that, in both humans and mice, the pathogenesis of NAFLD is associated with the disruption of the circadian clock combined with perturbations of the growth hormone and sex hormone pathways. However, while this condition protects mice from the development of fibrosis and insulin resistance, it correlates with increased fibrosis in humans. This suggests that the perturbation of the circadian clock and its associated disruption of the growth hormone and sex hormone pathways are critical for the pathogenesis of metabolic and liver diseases.


Subject(s)
ARNTL Transcription Factors/physiology , Circadian Clocks , Insulin Resistance , Non-alcoholic Fatty Liver Disease/etiology , ARNTL Transcription Factors/genetics , Animals , Diet, High-Fat , Gene Deletion , Gene Expression Regulation , Humans , Leptin/genetics , Lipid Metabolism/genetics , Male , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/genetics , Obesity/genetics
6.
Cell Tissue Res ; 387(3): 415-431, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34698916

ABSTRACT

Stroke is the leading cause of adult disability. Endogenous neural stem/progenitor cells (NSPCs) originating from the subventricular zone (SVZ) contribute to the brain repair process. However, molecular mechanisms underlying CNS disease-induced SVZ NSPC-redirected migration to the lesion area are poorly understood. Here, we show that genetic depletion of the p75 neurotrophin receptor (p75NTR-/-) in mice reduced SVZ NSPC migration towards the lesion area after cortical injury and that p75NTR-/- NSPCs failed to migrate upon BDNF stimulation in vitro. Cortical injury rapidly increased p75NTR abundance in SVZ NSPCs via bone morphogenetic protein (BMP) receptor signaling. SVZ-derived p75NTR-/- NSPCs revealed an altered cytoskeletal network- and small GTPase family-related gene and protein expression. In accordance, BMP-treated non-migrating p75NTR-/- NSPCs revealed an altered morphology and α-tubulin expression compared to BMP-treated migrating wild-type NSPCs. We propose that BMP-induced p75NTR abundance in NSPCs is a regulator of SVZ NSPC migration to the lesion area via regulation of the cytoskeleton following cortical injury.


Subject(s)
Neural Stem Cells , Stroke , Animals , Lateral Ventricles/metabolism , Mice , Neurogenesis , Receptor, Nerve Growth Factor/metabolism
7.
Cell Rep ; 34(6): 108742, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33567280

ABSTRACT

Glucocorticoids (GCs) are effective anti-inflammatory drugs; yet, their mechanisms of action are poorly understood. GCs bind to the glucocorticoid receptor (GR), a ligand-gated transcription factor controlling gene expression in numerous cell types. Here, we characterize GR's protein interactome and find the SETD1A (SET domain containing 1A)/COMPASS (complex of proteins associated with Set1) histone H3 lysine 4 (H3K4) methyltransferase complex highly enriched in activated mouse macrophages. We show that SETD1A/COMPASS is recruited by GR to specific cis-regulatory elements, coinciding with H3K4 methylation dynamics at subsets of sites, upon treatment with lipopolysaccharide (LPS) and GCs. By chromatin immunoprecipitation sequencing (ChIP-seq) and RNA-seq, we identify subsets of GR target loci that display SETD1A occupancy, H3K4 mono-, di-, or tri-methylation patterns, and transcriptional changes. However, our data on methylation status and COMPASS recruitment suggest that SETD1A has additional transcriptional functions. Setd1a loss-of-function studies reveal that SETD1A/COMPASS is required for GR-controlled transcription of subsets of macrophage target genes. We demonstrate that the SETD1A/COMPASS complex cooperates with GR to mediate anti-inflammatory effects.


Subject(s)
Enhancer Elements, Genetic/immunology , Macrophages/immunology , Multiprotein Complexes , RNA-Seq , Receptors, Glucocorticoid , Transcription, Genetic/immunology , Animals , Inflammation/genetics , Inflammation/immunology , Mice , Multiprotein Complexes/genetics , Multiprotein Complexes/immunology , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/immunology
8.
Comput Struct Biotechnol J ; 18: 1330-1341, 2020.
Article in English | MEDLINE | ID: mdl-32612756

ABSTRACT

Advancements in the field of next generation sequencing lead to the generation of ever-more data, with the challenge often being how to combine and reconcile results from different OMICs studies such as genome, epigenome and transcriptome. Here we provide an overview of the standard processing pipelines for ChIP-seq and RNA-seq as well as common downstream analyses. We describe popular multi-omics data integration approaches used to identify target genes and co-factors, and we discuss how machine learning techniques may predict transcriptional regulators and gene expression.

9.
Sci Rep ; 9(1): 9299, 2019 06 26.
Article in English | MEDLINE | ID: mdl-31243309

ABSTRACT

Fructose has become a major constituent of our modern diet and is implicated as an underlying cause in the development of metabolic diseases. The fructose transporter GLUT5 (SLC2A5) is required for intestinal fructose absorption. GLUT5 expression is induced in the intestine and skeletal muscle of type 2 diabetes (T2D) patients and in certain cancers that are dependent on fructose metabolism, indicating that modulation of GLUT5 levels could have potential in the treatment of these diseases. Using an unbiased screen for transcriptional control of the human GLUT5 promoter we identified a strong and specific regulation by liver X receptor α (LXRα, NR1H3). Using promoter truncations and site-directed mutagenesis we identified a functional LXR response element (LXRE) in the human GLUT5 promoter, located at -385 bp relative to the transcriptional start site (TSS). Finally, mice treated with LXR agonist T0901317 showed an increase in Glut5 mRNA and protein levels in duodenum and adipose tissue, underscoring the in vivo relevance of its regulation by LXR. Together, our findings show that LXRα regulates GLUT5 in mice and humans. As a ligand-activated transcription factor, LXRα might provide novel pharmacologic strategies for the selective modulation of GLUT5 activity in the treatment of metabolic disease as well as cancer.


Subject(s)
Fructose/metabolism , Glucose Transporter Type 5/metabolism , Liver X Receptors/metabolism , Adipose Tissue/metabolism , Animals , Diet , Duodenum/metabolism , Gene Expression Profiling , Gene Expression Regulation , HEK293 Cells , Haplorhini , Humans , Hydrocarbons, Fluorinated/pharmacology , Ligands , Male , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic , RNA, Messenger/metabolism , Response Elements , Sulfonamides/pharmacology , Transcription, Genetic
10.
Nat Commun ; 10(1): 306, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30659202

ABSTRACT

Glucocorticoids (GCs) are effective drugs, but their clinical use is compromised by severe side effects including hyperglycemia, hyperlipidemia and obesity. They bind to the Glucocorticoid Receptor (GR), which acts as a transcription factor. The activation of metabolic genes by GR is thought to underlie these adverse effects. We identify the bHLH factor E47 as a modulator of GR target genes. Using mouse genetics, we find that E47 is required for the regulation of hepatic glucose and lipid metabolism by GR, and that loss of E47 prevents the development of hyperglycemia and hepatic steatosis in response to GCs. Here we show that E47 and GR co-occupy metabolic promoters and enhancers. E47 is needed for the efficient recruitment of GR and coregulators such as Mediator to chromatin. Altogether, our results illustrate how GR and E47 regulate hepatic metabolism, and might provide an entry point for novel therapies with reduced side effects.


Subject(s)
Glucocorticoids/pharmacology , Liver/drug effects , Receptors, Glucocorticoid/genetics , Transcription Factor 3/genetics , Animals , Chromatin Immunoprecipitation/methods , Fatty Liver/metabolism , Gene Expression Profiling , Glucocorticoids/adverse effects , Glucose/genetics , Glucose/metabolism , Lipid Metabolism/genetics , Liver/metabolism , Male , Mice, Knockout , Transcription Factor 3/metabolism
11.
Cell ; 174(6): 1571-1585.e11, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30193114

ABSTRACT

Metabolic diseases are often characterized by circadian misalignment in different tissues, yet how altered coordination and communication among tissue clocks relate to specific pathogenic mechanisms remains largely unknown. Applying an integrated systems biology approach, we performed 24-hr metabolomics profiling of eight mouse tissues simultaneously. We present a temporal and spatial atlas of circadian metabolism in the context of systemic energy balance and under chronic nutrient stress (high-fat diet [HFD]). Comparative analysis reveals how the repertoires of tissue metabolism are linked and gated to specific temporal windows and how this highly specialized communication and coherence among tissue clocks is rewired by nutrient challenge. Overall, we illustrate how dynamic metabolic relationships can be reconstructed across time and space and how integration of circadian metabolomics data from multiple tissues can improve our understanding of health and disease.


Subject(s)
Circadian Clocks/physiology , Metabolome , Animals , Diet, High-Fat , Energy Metabolism , Liver/metabolism , Male , Metabolic Networks and Pathways , Metabolomics , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Prefrontal Cortex/metabolism , Suprachiasmatic Nucleus/metabolism , Uncoupling Protein 1/metabolism
12.
PLoS Biol ; 16(8): e2005886, 2018 08.
Article in English | MEDLINE | ID: mdl-30096135

ABSTRACT

Circadian clocks are fundamental physiological regulators of energy homeostasis, but direct transcriptional targets of the muscle clock machinery are unknown. To understand how the muscle clock directs rhythmic metabolism, we determined genome-wide binding of the master clock regulators brain and muscle ARNT-like protein 1 (BMAL1) and REV-ERBα in murine muscles. Integrating occupancy with 24-hr gene expression and metabolomics after muscle-specific loss of BMAL1 and REV-ERBα, here we unravel novel molecular mechanisms connecting muscle clock function to daily cycles of lipid and protein metabolism. Validating BMAL1 and REV-ERBα targets using luciferase assays and in vivo rescue, we demonstrate how a major role of the muscle clock is to promote diurnal cycles of neutral lipid storage while coordinately inhibiting lipid and protein catabolism prior to awakening. This occurs by BMAL1-dependent activation of Dgat2 and REV-ERBα-dependent repression of major targets involved in lipid metabolism and protein turnover (MuRF-1, Atrogin-1). Accordingly, muscle-specific loss of BMAL1 is associated with metabolic inefficiency, impaired muscle triglyceride biosynthesis, and accumulation of bioactive lipids and amino acids. Taken together, our data provide a comprehensive overview of how genomic binding of BMAL1 and REV-ERBα is related to temporal changes in gene expression and metabolite fluctuations.


Subject(s)
ARNTL Transcription Factors/physiology , Circadian Clocks/physiology , Muscle, Skeletal/physiology , Amino Acids/metabolism , Amino Acids/physiology , Animals , CLOCK Proteins/genetics , Circadian Rhythm/genetics , Gene Expression , Homeostasis , Humans , Lipid Metabolism/physiology , Lipids , Mice , Mice, Knockout , RNA, Messenger/metabolism
13.
Circulation ; 138(18): 2007-2020, 2018 10 30.
Article in English | MEDLINE | ID: mdl-29748186

ABSTRACT

BACKGROUND: Alternative macrophage activation, which relies on mitochondrial oxidative metabolism, plays a central role in the resolution of inflammation and prevents atherosclerosis. Moreover, macrophages handle large amounts of cholesterol and triglycerides derived from the engulfed modified lipoproteins during atherosclerosis. Although several microRNAs regulate macrophage polarization, the role of the microRNA-generating enzyme Dicer in macrophage activation during atherosclerosis is unknown. METHODS: To evaluate the role of Dicer in atherosclerosis, Apoe-/- mice with or without macrophage-specific Dicer deletion were fed a high-fat diet for 12 weeks. Anti-argonaute 2 RNA immunoprecipitation chip and RNA deep sequencing combined with microRNA functional screening were performed in the Dicer wild-type and knockout bone marrow-derived macrophages to identify the individual microRNAs and the mRNA targets mediating the phenotypic effects of Dicer. The role of the identified individual microRNA and its target in atherosclerosis was determined by tail vein injection of the target site blockers in atherosclerotic Apoe-/- mice. RESULTS: We show that Dicer deletion in macrophages accelerated atherosclerosis in mice, along with enhanced inflammatory response and increased lipid accumulation in lesional macrophages. In vitro, alternative activation was limited whereas lipid-filled foam cell formation was exacerbated in Dicer-deficient macrophages as a result of impaired mitochondrial fatty acid oxidative metabolism. Rescue of microRNA (miR)-10a, let-7b, and miR-195a expression restored the oxidative metabolism in alternatively activated Dicer-deficient macrophages. Suppression of ligand-dependent nuclear receptor corepressor by miR-10a promoted fatty acid oxidation, which mediated the lipolytic and anti-inflammatory effect of Dicer. miR-10a expression was negatively correlated to the progression of atherosclerosis in humans. Blocking the interaction between ligand-dependent nuclear receptor corepressor and miR-10a by target site blockers aggravated atherosclerosis development in mice. CONCLUSIONS: Dicer plays an atheroprotective role by coordinately regulating the inflammatory response and lipid metabolism in macrophages through enhancing fatty acid-fueled mitochondrial respiration, suggesting that promoting Dicer/miR-10a-dependent metabolic reprogramming in macrophages has potential therapeutic implications to prevent atherosclerosis.


Subject(s)
Atherosclerosis/pathology , Macrophages/metabolism , Ribonuclease III/metabolism , Aged , Aged, 80 and over , Animals , Antagomirs/metabolism , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/metabolism , Bone Marrow Cells/cytology , Diet, High-Fat , Fatty Acids/chemistry , Female , Humans , Macrophages/cytology , Male , Mice , Mice, Knockout , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , MicroRNAs/metabolism , Mitochondria/metabolism , Nuclear Receptor Co-Repressor 2/chemistry , Nuclear Receptor Co-Repressor 2/metabolism , Oxidative Stress , Ribonuclease III/genetics
14.
Nucleic Acids Res ; 45(19): 11121-11130, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-28977492

ABSTRACT

Transcription comprises a highly regulated sequence of intrinsically stochastic processes, resulting in bursts of transcription intermitted by quiescence. In transcription activation or repression, a transcription factor binds dynamically to DNA, with a residence time unique to each factor. Whether the DNA residence time is important in the transcription process is unclear. Here, we designed a series of transcription repressors differing in their DNA residence time by utilizing the modular DNA binding domain of transcription activator-like effectors (TALEs) and varying the number of nucleotide-recognizing repeat domains. We characterized the DNA residence times of our repressors in living cells using single molecule tracking. The residence times depended non-linearly on the number of repeat domains and differed by more than a factor of six. The factors provoked a residence time-dependent decrease in transcript level of the glucocorticoid receptor-activated gene SGK1. Down regulation of transcription was due to a lower burst frequency in the presence of long binding repressors and is in accordance with a model of competitive inhibition of endogenous activator binding. Our single molecule experiments reveal transcription factor DNA residence time as a regulatory factor controlling transcription repression and establish TALE-DNA binding domains as tools for the temporal dissection of transcription regulation.


Subject(s)
Gene Expression Regulation , Transcription Activator-Like Effectors/genetics , Transcription Factors/genetics , Binding Sites/genetics , Blotting, Western , Cell Line, Tumor , DNA/genetics , DNA/metabolism , Humans , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Microscopy, Fluorescence , Protein Binding , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transcription Activator-Like Effectors/metabolism , Transcription Factors/metabolism
15.
Development ; 144(21): 3917-3931, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28939666

ABSTRACT

During corticogenesis, distinct classes of neurons are born from progenitor cells located in the ventricular and subventricular zones, from where they migrate towards the pial surface to assemble into highly organized layer-specific circuits. However, the precise and coordinated transcriptional network activity defining neuronal identity is still not understood. Here, we show that genetic depletion of the basic helix-loop-helix (bHLH) transcription factor E2A splice variant E47 increased the number of Tbr1-positive deep layer and Satb2-positive upper layer neurons at E14.5, while depletion of the alternatively spliced E12 variant did not affect layer-specific neurogenesis. While ChIP-Seq identified a big overlap for E12- and E47-specific binding sites in embryonic NSCs, including sites at the cyclin-dependent kinase inhibitor (CDKI) Cdkn1c gene locus, RNA-Seq revealed a unique transcriptional regulation by each splice variant. E47 activated the expression of the CDKI Cdkn1c through binding to a distal enhancer. Finally, overexpression of E47 in embryonic NSCs in vitro impaired neurite outgrowth, and overexpression of E47 in vivo by in utero electroporation disturbed proper layer-specific neurogenesis and upregulated p57(KIP2) expression. Overall, this study identifies E2A target genes in embryonic NSCs and demonstrates that E47 regulates neuronal differentiation via p57(KIP2).


Subject(s)
Alternative Splicing/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation/genetics , Cerebral Cortex/embryology , Cyclin-Dependent Kinase Inhibitor p57/genetics , Neurons/cytology , Transcription Factor 3/metabolism , Animals , Base Sequence , Binding Sites/genetics , Cell Cycle/genetics , Cerebral Cortex/cytology , Chromatin/metabolism , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Developmental , Mice, Inbred C57BL , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurogenesis/genetics , Neurons/metabolism , Protein Binding , Transcription Factor 3/deficiency , Transcription, Genetic
16.
Cell Rep ; 19(3): 643-654, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28423325

ABSTRACT

Activation of immune cells results in rapid functional changes, but how such fast changes are accomplished remains enigmatic. By combining time courses of 4sU-seq, RNA-seq, ribosome profiling (RP), and RNA polymerase II (RNA Pol II) ChIP-seq during T cell activation, we illustrate genome-wide temporal dynamics for ∼10,000 genes. This approach reveals not only immediate-early and posttranscriptionally regulated genes but also coupled changes in transcription and translation for >90% of genes. Recruitment, rather than release of paused RNA Pol II, primarily mediates transcriptional changes. This coincides with a genome-wide temporary slowdown in cotranscriptional splicing, even for polyadenylated mRNAs that are localized at the chromatin. Subsequent splicing optimization correlates with increasing Ser-2 phosphorylation of the RNA Pol II carboxy-terminal domain (CTD) and activation of the positive transcription elongation factor (pTEFb). Thus, rapid de novo recruitment of RNA Pol II dictates the course of events during T cell activation, particularly transcription, splicing, and consequently translation.


Subject(s)
Genome , Protein Biosynthesis , RNA Polymerase II/metabolism , RNA Splicing/genetics , T-Lymphocytes/metabolism , Transcription, Genetic , Animals , Computer Systems , Mice, Transgenic , Phosphorylation , Protein Domains , RNA Polymerase II/chemistry
17.
Nat Commun ; 7: 12397, 2016 08 03.
Article in English | MEDLINE | ID: mdl-27484840

ABSTRACT

The myogenic regulatory factor MRF4 is highly expressed in adult skeletal muscle but its function is unknown. Here we show that Mrf4 knockdown in adult muscle induces hypertrophy and prevents denervation-induced atrophy. This effect is accompanied by increased protein synthesis and widespread activation of muscle-specific genes, many of which are targets of MEF2 transcription factors. MEF2-dependent genes represent the top-ranking gene set enriched after Mrf4 RNAi and a MEF2 reporter is inhibited by co-transfected MRF4 and activated by Mrf4 RNAi. The Mrf4 RNAi-dependent increase in fibre size is prevented by dominant negative MEF2, while constitutively active MEF2 is able to induce myofibre hypertrophy. The nuclear localization of the MEF2 corepressor HDAC4 is impaired by Mrf4 knockdown, suggesting that MRF4 acts by stabilizing a repressor complex that controls MEF2 activity. These findings open new perspectives in the search for therapeutic targets to prevent muscle wasting, in particular sarcopenia and cachexia.


Subject(s)
Aging/metabolism , MEF2 Transcription Factors/metabolism , Muscle, Skeletal/growth & development , Muscle, Skeletal/metabolism , Myogenic Regulatory Factors/metabolism , Active Transport, Cell Nucleus , Animals , Cell Nucleus/metabolism , Gene Expression Profiling , Gene Knockdown Techniques , HEK293 Cells , Histone Deacetylases/metabolism , Humans , Hypertrophy , Male , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/pathology , Organ Specificity/genetics , Protein Binding , Protein Biosynthesis , RNA Interference , RNA, Small Interfering/metabolism , Rats, Wistar , Repressor Proteins/metabolism , Transcription, Genetic , Up-Regulation/genetics
18.
Steroids ; 114: 7-15, 2016 10.
Article in English | MEDLINE | ID: mdl-27192428

ABSTRACT

Glucocorticoids (GCs), as ligands for the glucocorticoid receptor (GR), represent one of the most effective and frequently used classes of drugs for anti-inflammatory and immunosuppressive therapy. In addition, its role in physiological and pathophysiological processes makes the GR an important research target. The past decades have yielded a wealth of insight into the physiological and pharmacological effects of GCs. Today's era of next generation sequencing techniques is now beginning to elucidate the molecular and genomic circuits underlying GR's cell type-specific actions. This review focuses on the concepts and insights gained from recent studies in two of the most important tissues for GC action: the liver (mediating GR's metabolic effects) and macrophages (as the main target of anti-inflammatory GC therapy). We summarize results obtained from transgenic mouse models, molecular and genome-wide studies to illustrate GR's complex interactions with DNA, chromatin, co-regulators and other transcription factors. Characterizing the cell type-specific transcriptional complexes assembled around GR will pave the road for the development of new anti-inflammatory and metabolic therapies in the future.


Subject(s)
Inflammation/metabolism , Receptors, Glucocorticoid/metabolism , Animals , Glucocorticoids/metabolism , Humans , Inflammation/genetics , Mice , Mice, Transgenic , Protein Binding , Receptors, Glucocorticoid/genetics
19.
Nat Commun ; 7: 10782, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26923837

ABSTRACT

Hypothalamic leptin signalling has a key role in food intake and energy-balance control and is often impaired in obese individuals. Here we identify histone deacetylase 5 (HDAC5) as a regulator of leptin signalling and organismal energy balance. Global HDAC5 KO mice have increased food intake and greater diet-induced obesity when fed high-fat diet. Pharmacological and genetic inhibition of HDAC5 activity in the mediobasal hypothalamus increases food intake and modulates pathways implicated in leptin signalling. We show HDAC5 directly regulates STAT3 localization and transcriptional activity via reciprocal STAT3 deacetylation at Lys685 and phosphorylation at Tyr705. In vivo, leptin sensitivity is substantially impaired in HDAC5 loss-of-function mice. Hypothalamic HDAC5 overexpression improves leptin action and partially protects against HFD-induced leptin resistance and obesity. Overall, our data suggest that hypothalamic HDAC5 activity is a regulator of leptin signalling that adapts food intake and body weight to our dietary environment.


Subject(s)
Hypothalamus/metabolism , Leptin/metabolism , Animals , Blood Glucose , Cell Line , Gene Expression Regulation , Gene Knockdown Techniques , Glucose Tolerance Test , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Infusions, Intraventricular , Insulin Resistance , Laser Capture Microdissection , Leptin/genetics , Male , Melanocyte-Stimulating Hormones/pharmacology , Mice , Mice, Inbred Strains , Mice, Knockout , Neurons/physiology , Rats , Rats, Wistar
20.
Genome Res ; 25(6): 836-44, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25957148

ABSTRACT

Glucocorticoids (GCs) are commonly prescribed drugs, but their anti-inflammatory benefits are mitigated by metabolic side effects. Their transcriptional effects, including tissue-specific gene activation and repression, are mediated by the glucocorticoid receptor (GR), which is known to bind as a homodimer to a palindromic DNA sequence. Using ChIP-exo in mouse liver under endogenous corticosterone exposure, we report here that monomeric GR interaction with a half-site motif is more prevalent than homodimer binding. Monomers colocalize with lineage-determining transcription factors in both liver and primary macrophages, and the GR half-site motif drives transcription, suggesting that monomeric binding is fundamental to GR's tissue-specific functions. In response to exogenous GC in vivo, GR dimers assemble on chromatin near ligand-activated genes, concomitant with monomer evacuation of sites near repressed genes. Thus, pharmacological GCs mediate gene expression by favoring GR homodimer occupancy at classic palindromic sites at the expense of monomeric binding. The findings have important implications for improving therapies that target GR.


Subject(s)
Genomics/methods , Glucocorticoids/pharmacology , Receptors, Glucocorticoid/genetics , Transcriptional Activation , Animals , Cells, Cultured , Chromatin/genetics , Chromatin/metabolism , Chromatin Immunoprecipitation , Cloning, Molecular , Gene Expression , Genetic Therapy , High-Throughput Nucleotide Sequencing , Liver/drug effects , Liver/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred BALB C , Receptors, Glucocorticoid/metabolism , Sequence Analysis, RNA , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...